qs_adapter module¶
Adapter class for quantstats.
Note
Accessors do not utilize caching.
We can access the adapter from ReturnsAccessor
:
>>> import numpy as np
>>> import pandas as pd
>>> import vectorbt as vbt
>>> import quantstats as qs
>>> np.random.seed(42)
>>> rets = pd.Series(np.random.uniform(-0.1, 0.1, size=(100,)))
>>> benchmark_rets = pd.Series(np.random.uniform(-0.1, 0.1, size=(100,)))
>>> rets.vbt.returns.qs.r_squared(benchmark=benchmark_rets)
0.0011582111228735541
Which is the same as:
>>> qs.stats.r_squared(rets, benchmark_rets)
So why not just using qs.stats
?
First, we can define all parameters such as benchmark returns once and avoid passing them repeatedly to every function. Second, vectorbt automatically translates parameters passed to ReturnsAccessor
for the use in quantstats.
>>> # Defaults that vectorbt understands
>>> ret_acc = rets.vbt.returns(
... benchmark_rets=benchmark_rets,
... freq='d',
... year_freq='365d',
... defaults=dict(risk_free=0.001)
... )
>>> ret_acc.qs.r_squared()
0.0011582111228735541
>>> ret_acc.qs.sharpe()
-1.9158923252075455
>>> # Defaults that only quantstats understands
>>> qs_defaults = dict(
... benchmark=benchmark_rets,
... periods=365,
... periods_per_year=365,
... rf=0.001
... )
>>> ret_acc_qs = rets.vbt.returns.qs(defaults=qs_defaults)
>>> ret_acc_qs.r_squared()
0.0011582111228735541
>>> ret_acc_qs.sharpe()
-1.9158923252075455
The adapter automatically passes the returns to the particular function. It also merges the defaults defined in the settings, the defaults passed to ReturnsAccessor
, and the defaults passed to QSAdapter itself, and matches them with the argument names listed in the function's signature.
For example, the periods
and periods_per_year
arguments default to the annualization factor ReturnsAccessor.ann_factor
, which itself is based on the freq
argument. This makes the results produced by quantstats and vectorbt at least somewhat similar.
>>> vbt.settings.array_wrapper['freq'] = 'h'
>>> vbt.settings.returns['year_freq'] = '365d'
>>> rets.vbt.returns.sharpe_ratio() # ReturnsAccessor
-9.38160953971508
>>> rets.vbt.returns.qs.sharpe() # quantstats via QSAdapter
-9.38160953971508
We can still override any argument by overriding its default or by passing it directly to the function:
>>> rets.vbt.returns.qs(defaults=dict(periods=252)).sharpe()
-1.5912029345745982
>>> rets.vbt.returns.qs.sharpe(periods=252)
-1.5912029345745982
>>> qs.stats.sharpe(rets)
-1.5912029345745982
attach_qs_methods function¶
attach_qs_methods(
cls,
replace_signature=True
)
Class decorator to attach quantstats methods.
QSAdapter class¶
QSAdapter(
returns_accessor,
defaults=None,
**kwargs
)
Adapter class for quantstats.
Superclasses
Inherited members
- Configured.config
- Configured.copy()
- Configured.dumps()
- Configured.loads()
- Configured.replace()
- Configured.to_doc()
- Configured.update_config()
- Configured.writeable_attrs
- Pickleable.load()
- Pickleable.save()
adjusted_sortino method¶
QSAdapter.adjusted_sortino(
*,
rf=0,
periods=252,
annualize=True,
smart=False
)
See quantstats.stats.adjusted_sortino
.
aggregate_returns method¶
QSAdapter.aggregate_returns(
*,
period=None,
compounded=True
)
See quantstats.utils.aggregate_returns
.
autocorr_penalty method¶
QSAdapter.autocorr_penalty(
*,
prepare_returns=False
)
See quantstats.stats.autocorr_penalty
.
avg_loss method¶
QSAdapter.avg_loss(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.avg_loss
.
avg_return method¶
QSAdapter.avg_return(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.avg_return
.
avg_win method¶
QSAdapter.avg_win(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.avg_win
.
basic_report method¶
QSAdapter.basic_report(
*,
benchmark=None,
rf=0.0,
grayscale=False,
figsize=(8, 5),
display=True,
compounded=True,
periods_per_year=252,
match_dates=True,
**kwargs
)
See quantstats.reports.basic
.
best method¶
QSAdapter.best(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.best
.
cagr method¶
QSAdapter.cagr(
*,
rf=0.0,
compounded=True,
periods=252
)
See quantstats.stats.cagr
.
calmar method¶
QSAdapter.calmar(
*,
prepare_returns=True
)
See quantstats.stats.calmar
.
common_sense_ratio method¶
QSAdapter.common_sense_ratio(
*,
prepare_returns=True
)
See quantstats.stats.common_sense_ratio
.
comp method¶
QSAdapter.comp()
See quantstats.stats.comp
.
compare method¶
QSAdapter.compare(
*,
benchmark,
aggregate=None,
compounded=True,
round_vals=None,
prepare_returns=True
)
See quantstats.stats.compare
.
compsum method¶
QSAdapter.compsum()
See quantstats.stats.compsum
.
conditional_value_at_risk method¶
QSAdapter.conditional_value_at_risk(
*,
sigma=1,
confidence=0.95,
prepare_returns=True
)
See quantstats.stats.conditional_value_at_risk
.
consecutive_losses method¶
QSAdapter.consecutive_losses(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.consecutive_losses
.
consecutive_wins method¶
QSAdapter.consecutive_wins(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.consecutive_wins
.
cpc_index method¶
QSAdapter.cpc_index(
*,
prepare_returns=True
)
See quantstats.stats.cpc_index
.
cvar method¶
QSAdapter.cvar(
*,
sigma=1,
confidence=0.95,
prepare_returns=True
)
See quantstats.stats.cvar
.
defaults property¶
Defaults for QSAdapter.
Merges qs_adapter.defaults
from settings, returns_accessor.defaults
(with adapted naming), and defaults
from QSAdapter.
defaults_mapping property¶
Common argument names in quantstats mapped to ReturnsAccessor.defaults
.
distribution method¶
QSAdapter.distribution(
*,
compounded=True,
prepare_returns=True
)
See quantstats.stats.distribution
.
expected_return method¶
QSAdapter.expected_return(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.expected_return
.
expected_shortfall method¶
QSAdapter.expected_shortfall(
*,
sigma=1,
confidence=0.95
)
See quantstats.stats.expected_shortfall
.
exponential_stdev method¶
QSAdapter.exponential_stdev(
*,
window=30,
is_halflife=False
)
See quantstats.utils.exponential_stdev
.
exposure method¶
QSAdapter.exposure(
*,
prepare_returns=True
)
See quantstats.stats.exposure
.
full_report method¶
QSAdapter.full_report(
*,
benchmark=None,
rf=0.0,
grayscale=False,
figsize=(8, 5),
display=True,
compounded=True,
periods_per_year=252,
match_dates=True,
**kwargs
)
See quantstats.reports.full
.
gain_to_pain_ratio method¶
QSAdapter.gain_to_pain_ratio(
*,
rf=0,
resolution='D'
)
See quantstats.stats.gain_to_pain_ratio
.
geometric_mean method¶
QSAdapter.geometric_mean(
*,
aggregate=None,
compounded=True
)
See quantstats.stats.geometric_mean
.
ghpr method¶
QSAdapter.ghpr(
*,
aggregate=None,
compounded=True
)
See quantstats.stats.ghpr
.
greeks method¶
QSAdapter.greeks(
*,
benchmark,
periods=252.0,
prepare_returns=True
)
See quantstats.stats.greeks
.
group_returns method¶
QSAdapter.group_returns(
*,
groupby,
compounded=False
)
See quantstats.utils.group_returns
.
html_report method¶
QSAdapter.html_report(
*,
benchmark=None,
rf=0.0,
grayscale=False,
title='Strategy Tearsheet',
output=None,
compounded=True,
periods_per_year=252,
download_filename='quantstats-tearsheet.html',
figfmt='svg',
template_path=None,
match_dates=True,
**kwargs
)
See quantstats.reports.html
.
implied_volatility method¶
QSAdapter.implied_volatility(
*,
periods=252,
annualize=True
)
See quantstats.stats.implied_volatility
.
information_ratio method¶
QSAdapter.information_ratio(
*,
benchmark,
prepare_returns=True
)
See quantstats.stats.information_ratio
.
kelly_criterion method¶
QSAdapter.kelly_criterion(
*,
prepare_returns=True
)
See quantstats.stats.kelly_criterion
.
kurtosis method¶
QSAdapter.kurtosis(
*,
prepare_returns=True
)
See quantstats.stats.kurtosis
.
log_returns method¶
QSAdapter.log_returns(
*,
rf=0.0,
nperiods=None
)
See quantstats.utils.log_returns
.
make_index method¶
QSAdapter.make_index(
*,
rebalance='1M',
period='max',
returns=None,
match_dates=False
)
See quantstats.utils.make_index
.
make_portfolio method¶
QSAdapter.make_portfolio(
*,
start_balance=100000.0,
mode='comp',
round_to=None
)
See quantstats.utils.make_portfolio
.
metrics_report method¶
QSAdapter.metrics_report(
*,
benchmark=None,
rf=0.0,
display=True,
mode='basic',
sep=False,
compounded=True,
periods_per_year=252,
prepare_returns=True,
match_dates=True,
**kwargs
)
See quantstats.reports.metrics
.
monthly_returns method¶
QSAdapter.monthly_returns(
*,
eoy=True,
compounded=True,
prepare_returns=True
)
See quantstats.stats.monthly_returns
.
omega method¶
QSAdapter.omega(
*,
rf=0.0,
required_return=0.0,
periods=252
)
See quantstats.stats.omega
.
outlier_loss_ratio method¶
QSAdapter.outlier_loss_ratio(
*,
quantile=0.01,
prepare_returns=True
)
See quantstats.stats.outlier_loss_ratio
.
outlier_win_ratio method¶
QSAdapter.outlier_win_ratio(
*,
quantile=0.99,
prepare_returns=True
)
See quantstats.stats.outlier_win_ratio
.
outliers method¶
QSAdapter.outliers(
*,
quantile=0.95
)
See quantstats.stats.outliers
.
payoff_ratio method¶
QSAdapter.payoff_ratio(
*,
prepare_returns=True
)
See quantstats.stats.payoff_ratio
.
plot_daily_returns method¶
QSAdapter.plot_daily_returns(
*,
benchmark,
grayscale=False,
figsize=(10, 4),
fontname='Arial',
lw=0.5,
log_scale=False,
ylabel='Returns',
subtitle=True,
savefig=None,
show=True,
prepare_returns=True,
active=False
)
See quantstats.plots.daily_returns
.
plot_distribution method¶
QSAdapter.plot_distribution(
*,
fontname='Arial',
grayscale=False,
ylabel=True,
figsize=(10, 6),
subtitle=True,
compounded=True,
savefig=None,
show=True,
title=None,
prepare_returns=True
)
See quantstats.plots.distribution
.
plot_drawdown method¶
QSAdapter.plot_drawdown(
*,
grayscale=False,
figsize=(10, 5),
fontname='Arial',
lw=1,
log_scale=False,
match_volatility=False,
compound=False,
ylabel='Drawdown',
resample=None,
subtitle=True,
savefig=None,
show=True
)
See quantstats.plots.drawdown
.
plot_drawdowns_periods method¶
QSAdapter.plot_drawdowns_periods(
*,
periods=5,
lw=1.5,
log_scale=False,
fontname='Arial',
grayscale=False,
title=None,
figsize=(10, 5),
ylabel=True,
subtitle=True,
compounded=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.drawdowns_periods
.
plot_earnings method¶
QSAdapter.plot_earnings(
*,
start_balance=100000.0,
mode='comp',
grayscale=False,
figsize=(10, 6),
title='Portfolio Earnings',
fontname='Arial',
lw=1.5,
subtitle=True,
savefig=None,
show=True
)
See quantstats.plots.earnings
.
plot_histogram method¶
QSAdapter.plot_histogram(
*,
benchmark=None,
resample='ME',
fontname='Arial',
grayscale=False,
figsize=(10, 5),
ylabel=True,
subtitle=True,
compounded=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.histogram
.
plot_log_returns method¶
QSAdapter.plot_log_returns(
*,
benchmark=None,
grayscale=False,
figsize=(10, 5),
fontname='Arial',
lw=1.5,
match_volatility=False,
compound=True,
cumulative=True,
resample=None,
ylabel='Cumulative Returns',
subtitle=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.log_returns
.
plot_monthly_heatmap method¶
QSAdapter.plot_monthly_heatmap(
*,
benchmark=None,
annot_size=13,
figsize=(8, 5),
cbar=True,
square=False,
returns_label='Strategy',
compounded=True,
eoy=False,
grayscale=False,
fontname='Arial',
ylabel=True,
savefig=None,
show=True,
active=False
)
See quantstats.plots.monthly_heatmap
.
plot_monthly_returns method¶
QSAdapter.plot_monthly_returns(
*,
annot_size=9,
figsize=(10, 5),
cbar=True,
square=False,
compounded=True,
eoy=False,
grayscale=False,
fontname='Arial',
ylabel=True,
savefig=None,
show=True
)
See quantstats.plots.monthly_returns
.
plot_returns method¶
QSAdapter.plot_returns(
*,
benchmark=None,
grayscale=False,
figsize=(10, 6),
fontname='Arial',
lw=1.5,
match_volatility=False,
compound=True,
cumulative=True,
resample=None,
ylabel='Cumulative Returns',
subtitle=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.returns
.
plot_rolling_beta method¶
QSAdapter.plot_rolling_beta(
*,
benchmark,
window1=126,
window1_label='6-Months',
window2=252,
window2_label='12-Months',
lw=1.5,
fontname='Arial',
grayscale=False,
figsize=(10, 3),
ylabel=True,
subtitle=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.rolling_beta
.
plot_rolling_sharpe method¶
QSAdapter.plot_rolling_sharpe(
*,
benchmark=None,
rf=0.0,
period=126,
period_label='6-Months',
periods_per_year=252,
lw=1.25,
fontname='Arial',
grayscale=False,
figsize=(10, 3),
ylabel='Sharpe',
subtitle=True,
savefig=None,
show=True
)
See quantstats.plots.rolling_sharpe
.
plot_rolling_sortino method¶
QSAdapter.plot_rolling_sortino(
*,
benchmark=None,
rf=0.0,
period=126,
period_label='6-Months',
periods_per_year=252,
lw=1.25,
fontname='Arial',
grayscale=False,
figsize=(10, 3),
ylabel='Sortino',
subtitle=True,
savefig=None,
show=True
)
See quantstats.plots.rolling_sortino
.
plot_rolling_volatility method¶
QSAdapter.plot_rolling_volatility(
*,
benchmark=None,
period=126,
period_label='6-Months',
periods_per_year=252,
lw=1.5,
fontname='Arial',
grayscale=False,
figsize=(10, 3),
ylabel='Volatility',
subtitle=True,
savefig=None,
show=True
)
See quantstats.plots.rolling_volatility
.
plot_snapshot method¶
QSAdapter.plot_snapshot(
*,
grayscale=False,
figsize=(10, 8),
title='Portfolio Summary',
fontname='Arial',
lw=1.5,
mode='comp',
subtitle=True,
savefig=None,
show=True,
log_scale=False,
**kwargs
)
See quantstats.plots.snapshot
.
plot_yearly_returns method¶
QSAdapter.plot_yearly_returns(
*,
benchmark=None,
fontname='Arial',
grayscale=False,
hlw=1.5,
hlcolor='red',
hllabel='',
match_volatility=False,
log_scale=False,
figsize=(10, 5),
ylabel=True,
subtitle=True,
compounded=True,
savefig=None,
show=True,
prepare_returns=True
)
See quantstats.plots.yearly_returns
.
plots_report method¶
QSAdapter.plots_report(
*,
benchmark=None,
grayscale=False,
figsize=(8, 5),
mode='basic',
compounded=True,
periods_per_year=252,
prepare_returns=True,
match_dates=True,
**kwargs
)
See quantstats.reports.plots
.
profit_factor method¶
QSAdapter.profit_factor(
*,
prepare_returns=True
)
See quantstats.stats.profit_factor
.
profit_ratio method¶
QSAdapter.profit_ratio(
*,
prepare_returns=True
)
See quantstats.stats.profit_ratio
.
r2 method¶
QSAdapter.r2(
*,
benchmark
)
See quantstats.stats.r2
.
r_squared method¶
QSAdapter.r_squared(
*,
benchmark,
prepare_returns=True
)
See quantstats.stats.r_squared
.
rar method¶
QSAdapter.rar(
*,
rf=0.0
)
See quantstats.stats.rar
.
recovery_factor method¶
QSAdapter.recovery_factor(
*,
rf=0.0,
prepare_returns=True
)
See quantstats.stats.recovery_factor
.
remove_outliers method¶
QSAdapter.remove_outliers(
*,
quantile=0.95
)
See quantstats.stats.remove_outliers
.
returns_accessor property¶
Returns accessor.
risk_of_ruin method¶
QSAdapter.risk_of_ruin(
*,
prepare_returns=True
)
See quantstats.stats.risk_of_ruin
.
risk_return_ratio method¶
QSAdapter.risk_return_ratio(
*,
prepare_returns=True
)
See quantstats.stats.risk_return_ratio
.
rolling_greeks method¶
QSAdapter.rolling_greeks(
*,
benchmark,
periods=252,
prepare_returns=True
)
See quantstats.stats.rolling_greeks
.
rolling_sharpe method¶
QSAdapter.rolling_sharpe(
*,
rf=0.0,
rolling_period=126,
annualize=True,
periods_per_year=252,
prepare_returns=True
)
See quantstats.stats.rolling_sharpe
.
rolling_sortino method¶
QSAdapter.rolling_sortino(
*,
rf=0,
rolling_period=126,
annualize=True,
periods_per_year=252,
**kwargs
)
See quantstats.stats.rolling_sortino
.
rolling_volatility method¶
QSAdapter.rolling_volatility(
*,
rolling_period=126,
periods_per_year=252,
prepare_returns=True
)
See quantstats.stats.rolling_volatility
.
ror method¶
QSAdapter.ror()
See quantstats.stats.ror
.
serenity_index method¶
QSAdapter.serenity_index(
*,
rf=0
)
See quantstats.stats.serenity_index
.
sharpe method¶
QSAdapter.sharpe(
*,
rf=0.0,
periods=252,
annualize=True,
smart=False
)
See quantstats.stats.sharpe
.
skew method¶
QSAdapter.skew(
*,
prepare_returns=True
)
See quantstats.stats.skew
.
smart_sharpe method¶
QSAdapter.smart_sharpe(
*,
rf=0.0,
periods=252,
annualize=True
)
See quantstats.stats.smart_sharpe
.
smart_sortino method¶
QSAdapter.smart_sortino(
*,
rf=0,
periods=252,
annualize=True
)
See quantstats.stats.smart_sortino
.
sortino method¶
QSAdapter.sortino(
*,
rf=0,
periods=252,
annualize=True,
smart=False
)
See quantstats.stats.sortino
.
tail_ratio method¶
QSAdapter.tail_ratio(
*,
cutoff=0.95,
prepare_returns=True
)
See quantstats.stats.tail_ratio
.
to_drawdown_series method¶
QSAdapter.to_drawdown_series()
See quantstats.stats.to_drawdown_series
.
to_excess_returns method¶
QSAdapter.to_excess_returns(
*,
rf,
nperiods=None
)
See quantstats.utils.to_excess_returns
.
to_log_returns method¶
QSAdapter.to_log_returns(
*,
rf=0.0,
nperiods=None
)
See quantstats.utils.to_log_returns
.
to_prices method¶
QSAdapter.to_prices(
*,
base=100000.0
)
See quantstats.utils.to_prices
.
treynor_ratio method¶
QSAdapter.treynor_ratio(
*,
benchmark,
periods=252.0,
rf=0.0
)
See quantstats.stats.treynor_ratio
.
ulcer_index method¶
QSAdapter.ulcer_index()
See quantstats.stats.ulcer_index
.
ulcer_performance_index method¶
QSAdapter.ulcer_performance_index(
*,
rf=0
)
See quantstats.stats.ulcer_performance_index
.
upi method¶
QSAdapter.upi(
*,
rf=0
)
See quantstats.stats.upi
.
value_at_risk method¶
QSAdapter.value_at_risk(
*,
sigma=1,
confidence=0.95,
prepare_returns=True
)
See quantstats.stats.value_at_risk
.
var method¶
QSAdapter.var(
*,
sigma=1,
confidence=0.95,
prepare_returns=True
)
See quantstats.stats.var
.
volatility method¶
QSAdapter.volatility(
*,
periods=252,
annualize=True,
prepare_returns=True
)
See quantstats.stats.volatility
.
win_loss_ratio method¶
QSAdapter.win_loss_ratio(
*,
prepare_returns=True
)
See quantstats.stats.win_loss_ratio
.
win_rate method¶
QSAdapter.win_rate(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.win_rate
.
worst method¶
QSAdapter.worst(
*,
aggregate=None,
compounded=True,
prepare_returns=True
)
See quantstats.stats.worst
.